Modelling of digestive interactions and methane production in ruminants
Abstract
The adequacy of feed allowances to animal requirements, and the accurate prediction of their responses to practical rationing systems require the quantification of the possible digestive interactions (non-additive effect of potential values of feeds within a diet). Two data bases were built separately to model the specific effects of feeding level (FL) and proportion of concentrate (PCO) on dietary organic matter digestibility (OMd), energy loss in faeces, urine and methane emission in order to estimate the impact on energy values. The first data set, BOVIDIG, included 571 papers (1482 treatments) on OMd with cattle, and the second one, RUMENER, 151 papers (1021 treatments) on calorimetric experiments with cattle, sheep and goats.
The results from these sets globally fitted together : an increase in FL decreased OMd, or energy digestibility, which was partly counterbalanced by lower energy losses as urine and methane. An increase in PCO increased OMd. This was more and more important when the associated forage was of low digestibility or the FL was low. CH4 losses were curvilinearly linked with PCO. These results show that the assessement of energy impact of digestive interaction cannot be accurately determined from OMd only.
The proposed equations allowed the estimation, with simple dietary criteria (FL or PCO), of corrections for the calculation of energy values of diets fed to several ruminant species. These corrections were slightly higher than the present ones proposed by the INRA systems for medium diets, but are equal for the intensive diets with high values of FL and PCO.
Attachments
No supporting information for this article##plugins.generic.statArticle.title##
Views: 1456
Most read articles by the same author(s)
- D. SAUVANT , G. CANTALAPIEDRA-HIJAR , L. DELABY , J.B. DANIEL , P. FAVERDIN , P. NOZIÈRE , Updating protein requirements in ruminants and determination of the responses of lactating females to metabolisable protein supply , INRAE Productions Animales: Vol. 28 No. 5 (2015)
- M. TAGHIPOOR, Sophie LEMOSQUET, J. VAN MILGEN, A. SIEGEL, D. SAUVANT, F. GONDRET, Modelling of metabolic flexibility: toward a better understanding of animal adaptive capacities , INRAE Productions Animales: Vol. 29 No. 3 (2016)
- J.M. PEREZ , G. BORIES , A. AUMAITRE , B. BARRIER-GUILLOT, A. DELAVEAU , L. GUEGUEN , M. LARBIER , D. SAUVANT , Consequences of the replacement of meat and bone meals and fats of animal origin on farm animals and for human consumers , INRAE Productions Animales: Vol. 15 No. 2 (2002)
- D. SAUVANT, Nutritional influences of granulometry of ruminant diet , INRAE Productions Animales: Vol. 13 No. 2 (2000): Numéro Spécial : Granulométrie des aliments
- D. SAUVANT, F. MESCHY, D. MERTENS, Les composantes de l’acidose ruminale et les effets acidogènes des rations , INRAE Productions Animales: Vol. 12 No. 1 (1999)
- D. SAUVANT , J.L. PEYRAUD , Diet formulation and evaluation of the risk of acidosis , INRAE Productions Animales: Vol. 23 No. 4 (2010)
- D. SAUVANT, S. GIGER-REVERDIN, F. MESCHY, The control of latent ruminal acidosis , INRAE Productions Animales: Vol. 19 No. 2 (2006)
- S. GIGER-REVERDIN, J. AUFRERE, D. SAUVANT, C. DEMARQUILLY, M. VERMOREL, S. POCHET, Prediction of net energy value of compound feeds for ruminants , INRAE Productions Animales: Vol. 3 No. 3 (1990)
- D. SAUVANT, P. NOZIÈRE, The quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems , INRAE Productions Animales: Vol. 26 No. 4 (2013)
- D. SAUVANT, S. GIGER-REVERDIN, F. MESCHY, L. PUILLET, P. SCHMIDELY, Updating nutritional recommendations for dairy goats , INRAE Productions Animales: Vol. 25 No. 3 (2012): Dossier : Élevage caprin
