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 � There are many indicators for assessing feed and land use efficiency in ruminants. In this article, we present 
the main ones and summarise the numerous studies that have used them to improve their interpretation.1

Introduction

After the Second World War, agri-
cultural policies were put in place to 
increase food production. Together 
with developments in genetic selection, 
mechanisation and the use of inputs, 
they led to a significant increase (about 
over 300%) in crop yields, particularly 
in Europe (Mazoyer & Roudart, 2002; 
Lang & Haesman, 2015; FAO, 2024). The 
outcome has been a cereal surplus in 
Western countries and the introduction 
of nutritionally richer products in ani-
mal feed. In parallel with these changes, 
we have seen the intensification and 
territorial specialisation (Roguet et al., 
2015) of animal production systems, 
whose productivity has also risen by 
around 130% (FAO, 2024).

Foods of animal origin, such as meat, 
milk and eggs, provide 18% of the 
energy and 25% of the protein con-
sumed by humans worldwide (Mottet 
et al., 2017). Among other things, they 
are recognised for their high energy, 
protein and vitamin density, particularly 

vitamin B12 which is not present in 
plant-based foods and micronutrients 
such as iron, zinc and calcium. Their 
qualities, ranging from high digestibil-
ity and bioavailability to richness in lim-
iting amino acids, correspond to human 
dietary requirements (Randolph et al., 
2007; Dror & Allen, 2011; Gorissen et al., 
2018; Day et al., 2022; Beal & Ortenzi, 
2022; Costa-Catala et al., 2023).

However, when livestock consume 
agricultural products that are edible for 
humans, they represent an additional 
trophic level in the agro-ecosystem 
between plants and humans, leading to 
unavoidable losses. On a global scale, 
86% of the feed consumed by farm ani-
mals is fodder and industrial by-prod-
ucts inedible by humans (Mottet et al., 
2017) although it is currently suggested 
that more food could potentially be 
produced in certain agricultural areas 
presently used for livestock produc-
tion if they were converted to alterna-
tive cropping systems giving priority 
to humans-edible crops (van Zanten 
et al., 2016). As a result, animals are 
often directly viewed as one of the main 

causes of inefficiency in food systems 
(Garnett et al., 2015; Poore & Nemecek, 
2018).

Furthermore, the use of biomass for 
other purposes is expected to increase 
as fossil fuel usage decreases. In France, 
for example, while 36 Mt of dry matter 
(DM) are used each year for bioenergy 
(methanisation, biofuels, wood, wood 
waste), an additional 28 Mt DM/year will 
be needed by 2030 (SPGE, 2024). The 
European Biogas Association is also 
aiming to boost production by a factor 
of 30 by 2050 (de Groot et al., 2022).

Nevertheless, much work is being 
carried out in France and Europe to 
prioritise the different uses of biomass. 
The General Secretariat for Ecological 
Planning is proposing a form of mer-
it-order, in which food and feed are 
among the uses given priority while 
electricity production is classed as a 
development to be moderated. The 
“Food Waste Hierarchy” communicated 
by the European Union also favours 
animal feed over bioenergy (European 
Commission, 2020).
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The sharp uptick in the human 
population to 9.8 billion by 2050, the 
expected increase in demand for animal 
products of 20% (FAO, 2023) as well as 
the depletion and pollution of natural 
resources coupled with the effects of 
climate change (Foresight, 2011), are 
calling into question the ability of cur-
rent agricultural systems to guarantee 
future food security. This situation is 
currently prompting renewed interest 
from the political and scientific com-
munities in terms of the contribution 
of livestock production to food security. 
In the context of competition between 
food and feed, the main issues are food 
availability and quality. Tools need to 
be defined and mobilised to inform the 
debate and guide decisions.

The aim of this review article is i) to 
present indicators for characterising 
feed and land use efficiency on cattle 
farms, ii) to summarise the performance 
of these farms and iii) to analyse the 
relationship between these indicators 
and the characteristics of these farms.

1. Indicators for assessing 
the use of food resources 
and land by livestock 
production systems

The indicators presented in this study 
are based on the general concept of 
efficiency, namely the ratio between 
an output and the resources mobilised 
to achieve that output. They are taken 
from the literature and described in 
Figure 1 and Table 1.

These indicators consider two main 
resources that limit animal production 
(feed and farmland) while the products 
comprise the energy and protein con-
tained in milk, eggs and meat. Inputs 
(e.g. farmland) used upstream of the 
farm, for the production of purchased 
feed to cite an example, are also taken 
into account.

Four types of indicator were identi-
fied and are described in Table 1: net 
efficiency, net productivity, land use 

and land use ratio. Databases were 
compiled in order to summarise the var-
ious results obtained for the recognised 
indicators. For each database obtained, 
the type of data (experimental farm, 
commercial farm, test case, etc.), the 
number of systems studied, the type of 
livestock, the region and the indicators 
used are summarised in Table 2.

2. Feed conversion 
efficiency

	� 2.1. Gross efficiency

Gross feed conversion efficiency rep-
resents the quantity of Animal source 
food (ASF) produced in relation to the 
total quantity of feed used. This can 
be calculated per kg of product or by 
taking into account only the protein or 
energy components of the feed pro-
duced and consumed.

Improving gross feed conversion 
efficiency has been a major focus of 

Figure 1. Protein flows and associated surface areas in an agro-ecosystem, with losses between tropical levels due to meta-
bolic losses and various losses (during harvesting, storage, etc.).

Abbreviations: P: Protein, A: Area, AFP: Animal-food protein, CFP: Crop-food protein, CfPhe: Human-edible crop feed protein, CfPnhe: Non-human-edible crop feed 
protein, GP: Grass-based protein, CP: Crop protein, PG: Permanent grassland, TG: Temporary grassland, CP: Crop protein area (Battheu-Noirfalise et al., 2023).
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research and development in animal 
production. Various levers such as 
husbandry, feeding, genetic selection, 
nutrition and animal health have been 
mobilised (Garnett et al., 2015), leading 
to significant improvements, particu-
larly for poultry.

Ruminants, and in particular suckler 
cattle systems, which are less standard-
ised than monogastric systems (Gerber 
et al., 2015), have highly variable gross 
efficiencies (GEs) by mass. For exam-
ple, Wilkinson (2011) has shown that 
beef production systems in the UK 
consume between 7.5 (GE = 13%) and 
27.5 kg (GE = 4%) of feed per kg of meat 

produced, depending on the type of 
animal and feed considered.

These differences are repeated when 
we look at gross energy efficiency. 
Laisse et al. (2018) calculated gross 
energy efficiencies of 25% for broilers, 
26% for pork and only 4% for beef. The 
difference between broilers and other 
meat products increases when the 
protein fraction of feed is considered. 
In fact, gross protein efficiency reaches 
54% for broilers versus 40-42% for pork 
and 8% for beef. This may cultivate the 
simplistic idea that replacing all beef 
with poultry would enable feeding for a 
greater number of people. In the United 

States, this would represent 116 million 
extra people being fed (Shepon et al., 
2016).

Gross protein feed conversion effi-
ciency reaches 27% for laying hen sys-
tems and 19-24% for dairy cow systems 
(Laisse et al., 2018).

	� 2.2. Net efficiency

Compared with monogastric ani-
mals, which use enzymatic digestion, 
ruminants are able to make better use 
of grass and other fibre-rich feedstuffs 
that are inedible by humans, thanks to 
the specific microbial predigestion that 

Table 1. Names, authors, equations and characteristics of the various indicators. The equations are written for protein-
related indicators.

Indicator Author, Year Equation Features

Gross efficiency
AFP

GP CfP CfPhe nhe+ +  
Processing efficiency expressed as dry 
matter (DM), energy or protein.

Net efficiency Wilkinson et al. (2011)
AFP
CfPhe  

If > 1: net protein producer.
If = 1: transformer.
If < 1: net consumer.

Net efficiency + Protein 
quality Ertl et al. (2016a)

AFP DIAAS
CfP DIAAShe

×
×  

Like net protein efficiency but taking into 
account the quality of the protein for human 
consumption (DIAAS).

 Land Use De Vries et al. (2010)
A A A A

AFP
PG TG CfP nhe CfP he+ + +( ) ( )

 
Surface area used (m²) per unit of product 
(kg DM, Joule or kg protein).

Ploughable Nijdam et al. (2012)
A A A

AFP
TG CfP nhe CfP he+ +( ) ( )

 
Ploughed area (m²) used per unit of 
product (kg DM, Joule or kg protein).

Permanent meadows
A
AFP
PG

 
Area of permanent grassland used (m²) per 
unit of product (kg DM, Joule or kg protein).

 Land Use Ratio (LUR) van Zanten et al. 
(2016)

PotentialCFP
AFP  

The ratio between potential plant 
production and observed animal production 
from the same soil.

LUR + Edible portion 
of food and protein 
quality

Hennessy et al. (2021)
PotentialCFP DIAAS

AFP DIAAS
×

×  
Use of edible portions of potential plant 
production and DIAAS protein scores.

Net productivity Battheu-Noirfalise et al. 
(2023)

AFP CfP
A A A

he

PG TG CfP nhe

−
+ + ( )  

Productivity of surfaces not in competition 
with the Man of the breeding system.

Abbreviations: P: Protein, A: Area, AFP: Animal-food protein, CFP: Crop-food protein, CfPhe: Human-edible crop feed protein, CfPnhe: Non-human-edible crop 
feed protein, GP: Grass-based protein, ACP: Crop protein area, PG: Permanent grassland, TG: Temporary grassland, DIAAS: Digestible indispensable Amino Acids 
Score (Battheu-Noirfalise et al., 2023).
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takes place in their rumen. Steinfeld et al. 
(1997) first proposed a “human-edible 
feed conversion efficiency”, estimating 
that, worldwide, animals use 1.4 times 
more human-edible feed than they pro-
duce ASF. Wilkinson (2011) formalised 
the “edible feed conversion ratio” indi-
cator and described the performance 
of a variety of livestock production 
systems in the UK. Net feed conver-
sion efficiency was proposed later (Ertl 
et al., 2015; Laisse et al., 2018) and is 
referenced in this paper. It represents 
the inverse of the indicator presented 
by Wilkinson (2011); the amount of ASF 
produced is divided by the amount of 
human edible feed used.

To calculate this ratio, the human edi-
ble fraction of each food is estimated as 
the proportion of the product that can 
currently be valued as food for humans 
(Figure 2). Since food crops are split into 
different fractions (for example, milled 
wheat grains are separated into flour, 

wheat bran and gluten), the amounts 
of protein and energy directly edible 
by humans represent the weighted 
proportions of protein and energy 
found in each of the fractions edible 
to humans (Figure 2). For many animal 
feeds, the energy and protein fractions 
consumable by humans are very sim-
ilar; however, some have more signif-
icant differences. For example, maize 
is largely valued for its starch while the 
protein-rich by-products (corn gluten 
feed and corn gluten meal) can cur-
rently not be eaten by humans (Laisse 
et al., 2018).

On this basis, as part of the Interreg 
AUTOPROT project (037-4-09-092), 
210 concentrate formulas marketed in 
Wallonia (Belgium), Lorraine (France), 
Luxembourg, Rhineland-Palatinate and 
Saarland (Germany) were studied. The 
proportion of protein competing with 
humans in concentrates with a protein 
content below 25% depended mainly 

on the proportion of cereals. For con-
centrates with a high protein content, 
the proportion of rapeseed meal (which 
was not considered to be in competi-
tion) and soya meal in the concentrated 
feed explain the variability observed 
(Figure 2).

For French-type livestock systems, 
the net protein efficiency estimate was 
greater than for dairy cattle (1.01-2.57), 
pig and laying hen (1.02) systems; they 
produce more human-consumable 
protein than they consume while it was 
less than one for beef cattle (0.67-0.71) 
and broiler (0.88) systems (Laisse et al., 
2018). Meat sheep performed better 
(1.28) or worse (0.34) depending on 
the production system. The net energy 
efficiency estimate was systematically 
lower and only extensive grass-fed dairy 
systems exhibited a value greater than 
one (Laisse et al., 2018). In terms of dairy 
systems, cattle demonstrated better 
average performance than ewes and 

Table 2. Data collected with evaluation of certain efficiency or land use indicators.

Source N Type of Data Type of Farm Region Indicators

Laisse et al. (2018) 10

Case types

Dairy and beef cattle, 
beef sheep, pigs, broilers, 
laying hens.

France Gross and net efficiency.

Mosnier et al. 
(2021) 16 Dairy and beef cattle. European Union Net efficiency, land use.

DAEA, incl. 
Battheu-Noirfalise 
et al. (2023, 2024b)

262

Commercial 
farms

Dairy and beef cattle. Wallonia (Belgium)
Gross and net efficiency, 
land use.
Net productivity.

AUTOPROT project 213 Dairy cattle.

Belgium (Wallonia), 
France (Lorraine), 
Luxembourg, Germany 
(Rhineland-Palatinate 
and Saarland)

Gross and net efficiency, 
land use.
Net productivity.

IDELE 142 Beef cattle. France Gross and net efficiency.

van Zanten et al. 
(2016) 123 Dairy cattle. France Land use ratio.

Hennessy et al. 
(2021) 3

Case types
Dairy cattle, pigs. Ireland Land use ratio.

Allix et al. (2024) 12 Dairy cattle. France Land use ratio.

Rouillé et al. (2023) 498 Commercial 
farms Cattle, sheep, dairy goats. France Gross and net efficiency.

N: Number, DAEA: Department of Agricultural Economic Analysis.
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goats (Rouillé et al., 2023). When ana-
lysing European beef systems, Mosnier 
et al. (2021) also highlighted the impor-
tance of taking into account the differ-
ent phases in the life of beef animals. 
In fact, cow-calf systems that use a lot 
of grass generally have high net effi-
ciency while fatteners can have lower 
performances due to greater use of feed 
competing with humans such as cere-
als. Breeding systems therefore have to 
be combined with fattening systems, 
which makes them net consumers of 
plant proteins consumable by humans 
in most cases (Mosnier et al., 2021).

Furthermore, the fraction of animal 
feed that is edible for humans is nei-
ther fixed nor generalisable given that 
it depends on the context and technol-

ogies available in the agri-food sector 
of the country in question (Laisse et al., 
2018). For example, Ertl et al. (2015) 
considered that 30% of the proteins 
present in rapeseed meal can be 
extracted and valorised in human food. 
However, Laisse et al. (2018) assumed 
that the protein fraction of rapeseed 
edible by humans was zero because 
this extraction process is not imple-
mented in France. They described dif-
ferent scenarios in terms of the edible 
fraction of animal feed for humans. 
Indeed, in the future, higher extraction 
rates due to new technological pro-
cesses and changes in consumption 
habits could lead to higher edible frac-
tions (Ertl et al., 2015). Adopting these 
scenarios, Laisse et al. (2018) found a 
reduction in net protein efficiency of 

16-40% for ruminants and 36-51% for 
monogastrics.

	� 2.3. The role of protein 
quality

In order to represent the difference 
in protein quality and digestibility, the 
Digestibility of Indispensable Amino 
Acids Score (DIAAS) has been pro-
posed by the FAO (2013) as a reference 
method. This score represents the con-
tent of the first limiting indispensable 
amino acid in the protein tested versus 
the content of the same amino acid in 
a reference protein corresponding to 
the needs of a child aged six months to 
three years and based on the actual ileal 
digestibility of indispensable amino 
acids (Rutherfurd et al., 2015).

Figure 2. Proportions of protein and energy and land use for different feeds based on Laisse et al. (2018) and the ECOALIM 
database for land use, for staple feeds and 203 concentrate recipes (AUTOPROT Project).
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Initially, it was suggested that DIAAS 
values should be truncated at 100% 
because the higher values represent 
a surplus in relation to human nutri-
tional requirements and are therefore 
not valued by the human body if the 
food is the only component of the plate 
(FAO & WHO, 1991). Later, it was argued 
that non-truncated values should be 
considered because, in mixed diets, 
a high-quality protein-based food 
can supplement another food that 
is deficient in essential amino acids 
(Rutherfurd et al., 2015). The FAO (2013) 
suggests using the amino acid require-
ments for a child aged six months to 
three years as the reference protein. 
Taking DIAAS into account when cal-
culating net efficiency multiplies net 
efficiency values by 1.7 to 2.4 for milk 
production, 1.6 for egg production 
and 1.4 to 1.9 for meat production (Ertl 
et al., 2016a, 2016b; Laisse et al., 2018).

The efficiencies obtained from the 
different sources, according to the 
different variants presented above, 
are summarised in Figure 3. Figure 3B 
depicts the net efficiency of systems 
with a double beef herd as a function 
of the proportion of suckler and dairy 
cows. The net protein efficiencies for the 
different types of beef herd (Figure 3C) 
and dairy herd (Figure 3D) are also 
illustrated.

3. Use of surfaces

The availability of agricultural land, 
and in particular arable land, is consid-
ered to be the most limiting factor for 
feeding the planet in 2050 (Bruinsma, 
2009). Total land use represents all the 
agricultural land used (on and off the 
farm) per unit of animal product (e.g. 
per kg of protein produced).

In a review of 16 life cycle assessment 
(LCA) studies, De Vries and De Boer 
(2010) found that the land required 
to produce animal products ranged 
from 1.1 to 2.0 m²/kg for milk, 4.5 to 
6.2 m²/kg for eggs, 8.1 to 9.9 m²/kg for 
chicken, 8.9 to 12.1 m²/kg for pork and 
27 to 491 m²/kg for beef. However, not 
all land has the same agricultural value. 
More specifically, there is a big differ-
ence between the potential value of 

permanent grassland and arable land 
(Wirsenius, 2003). In another study, 
Nijdam et al. (2012) calculated the 
share of grassland and showed that, 
although beef production from exten-
sive pastoral systems has the highest 
land use, it can be entirely composed 
of permanent grassland.

Historically, permanent grassland 
corresponded to land that could not 
be ploughed, shallow soils and/or 
soils with a high stone content and 
plots that were inaccessible and/or 
very steep. However, with the spe-
cialisation of production systems and 
territories, some arable land has been 
transformed into grassland which has 
become permanent. It is now esti-
mated, on the basis of soil and climate 
conditions, that some permanent 
grasslands could be cultivated (IIASA/
FAO, 2012). More notably, Mottet et al. 
(2017) estimated that, on a global 
scale, 35% of the two billion hectares 
of grassland used by livestock could be 
converted to cropland. However, this 
change in land use could lead to GHG 
emissions due to the release of carbon 
stored in the soil, losses in biodiversity 
and other ecosystem services (Foley 
et al., 2005).

	� 3.1. Land use ratio

Indicators of land use, whether total, 
arable or permanent grassland, give 
an idea of the efficiency of land use for 
different types of livestock production. 
However, it is not certain that the ara-
ble land used by animals could produce 
more food on the basis of a rotation 
optimising the presence of crops for 
human consumption than current ASF 
production.

To answer this question, van Zanten 
et al. (2016) proposed the land use ratio 
(LUR) which compares the potential for 
plant protein production on land used 
by livestock with protein production by 
livestock. Grassland on sandy soil is con-
sidered arable with a production poten-
tial of 56 t/ha of potatoes or 7.3 t/ha of 
wheat. Two livestock systems in the 
Netherlands (one with laying hens and 
the other with dairy cows on sandy soil) 
had a LUR greater than one, indicating 
that a cropping system would produce 

more protein per unit area than the 
livestock systems currently in place. 
The dairy system on peaty soil, which is 
less suitable for crops, exhibited a LUR 
of less than one.

Hennessy et al. (2021) suggested a 
LUR based on edible protein multiplied 
by the DIAAS score for dairy, suckler 
and pig farming systems in Ireland. 
They modelled the influence of the 
share of arable permanent grassland 
on their result. On this basis, when 
the proportion of arable grassland 
increases from 0 to 100%, the LUR 
rises from 0.25 to 1.35 for dairy cattle 
systems and from 0.28 to 3.77 for suck-
ler cattle systems. Pig systems would 
only be slightly affected due to their 
low use of grassland. They also illus-
trate the importance of the crop rota-
tion used for the comparison. Using 
a high-protein crop rotation (cereals, 
protein crops), the LUR will be higher 
than using low-protein crops (pota-
toes, sugar beet). The potential offered 
by cropping systems is also associated 
with considerable uncertainty as to 
their long-term viability (e.g. main-
tenance of soil fertility, pest control) 
and the variability of expected yields 
depending on biophysical context and 
farm management systems.

Allix et al. (2024) calculated the LUR 
using both methods for 12 French dairy 
systems (four grassland, four mixed and 
four maize). As shown in Figure 4, the 
LUR obtained was lower for grassland 
systems and generally higher using 
the van Zanten et al. (2016) method. 
This study, which, unlike the two pre-
vious studies, assumes that permanent 
grassland cannot be cultivated, never-
theless evinces that the result depends 
heavily on the assumptions made spe-
cifically regarding the potential of the 
land used by ruminants in terms of 
crop production and whether or not 
differences in the nutritional quality of 
animal and plant products are taken 
into account.

	� 3.2. Net productivity

Net productivity has been proposed 
as a more accurate representation 
for the contribution of livestock pro-
duction systems to food availability 
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Figure 3. Gross and net feed protein and energy conversion efficiencies for different types of beef farms (Source: ERADAL 
and AUTOPROT projects).
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through integration of the use of food 
competing with human food and 
the use of agricultural land (Battheu-
Noirfalise et al., 2023). This indicator is 
equal to the difference between the 
quantity of ASF produced and food 
competing with human food used, 
divided by the surface area utilised 
by livestock farming that cannot be 
used to produce human-edible food. 
This “inedible” area corresponds to all 
permanent grassland and the share 
of arable land associated with the 
fractions (co-products) of crops that 

cannot be used by humans. The net 
productivity value is positive when 
the system produces proteins edible 
by humans and negative otherwise. 
Dairy systems achieve positive net 
productivity with around 200 kg of 
protein produced per hectare that 
cannot be consumed by humans. Beef 
systems have a productivity of around 
zero (Figure 5). Battheu-Noirfalise et al. 
(2024b) observed –8 kg protein/ha for 
maize and intraconsumption based 
systems at 22 kg protein/ha for grass-
based systems.

4. Farm performance 
and technical parameters

In order to gain better understand-
ing of the variability of the perfor-
mances observed, a summary of the 
correlations between management 
parameters and efficiency, land use 
and productivity indicators (calcu-
lated separately for the different 
databases used) is set out in Table 3. 
Graphs of the variables resulting from 
the principal component analysis are 
presented in Figure 6. Gross efficien-
cies (protein and energy) are strongly 
correlated with productivity per cow 
for dairy farms and weight gain per 
LU for meat farms, and therefore, in 
both cases, with the proportion of 
maize in the ration. Gross efficiency 
is also negatively correlated with age 
at first calving and calving-to-calving 
interval. In fact, the lower the age at 
first calving and the shorter the calv-
ing-to-calving interval, the lower the 
unproductive, and therefore inef-
ficient periods for the animals. Net 
efficiencies (protein and energy) are 
negatively correlated with the use of 
concentrates (per litre or per kg of live 

Figure 4. Results of the Land Use Ratio (LUR) as defined by van Zanten et al. (2016) on the left for French (FR) and Dutch (NL) 
systems and by Henessy et al. (2021) on the right for various dairy systems and an Irish beef system (IR).
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Figure 5. Net protein productivity for dairy and beef systems.
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Figure 6. Principal component analysis carried out on the technical performance of dairy farms on the left (data sources: 
DAEA and AUTOPROT) and suckler farms on the right (data sources: DAEA).
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Table 3. Summary of correlations between efficiency, land use and net productivity indicators and different management 
parameters on dairy and beef farms.
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weight) and the proportion of maize 
in the ration but positively correlated 
with the proportion of pasture for 
dairy farms. These findings support 
the observations made by Laisse et al. 
(2018) regarding a less productive 
grass-fed dairy cattle system but with 
higher net efficiency than the maize-
based dairy system.

Land use, where we are aiming for 
a low score and therefore correlations 
to be interpreted in the opposite way, 
is correlated with age at first calving 
and negatively correlated with milk 
and meat productivity. In contrast, 
the use of arable land is positively 
correlated with the use of maize and 
concentrates.

Net productivity is positively corre-
lated with milk productivity and grass 
yield but negatively correlated with age 
at first calving and the use of maize and, 
in the case of beef farms, concentrates. 
Battheu-Noirfalise et al. (2023) also 
observed a correlation with the protein 
content of concentrates used in dairy 
systems.

For dairy farms, net productivity is 
negatively correlated with arable land 
use and correlated with net efficiency 
as observed by Battheu-Noirfalise 
et al. (2023). For suckler farms, net 
productivity is strongly correlated 
with net efficiency and both variables 
are negatively correlated with arable 
land use.

5. Indicators, 
interpretation and outlook

The interpretation of indicators such 
as net efficiency can be simple. In this 
case, a farming system is considered to 
be a net protein producer if it has an 
efficiency greater than one. However, 
this indicator provides only partial infor-
mation on the system’s performance. 
For example, having an efficiency level 
much higher than one does not always 
imply better contribution to food secu-
rity than a lower value since this indi-
cator does not take into account the 
level of livestock production per unit 

area, which can be very low. The net 
productivity indicator, which factors 
in production and surface area used, is 
not subject to this shortcoming. A net 
productivity of 300 kg of protein per 
hectare that does not compete with 
humans will, by definition, contribute 
more to protein production for humans 
than a farm producing 100 kg of pro-
tein per hectare. However, the levels 
achieved for this indicator also need 
to be put into perspective. The soil and 
climate context largely determines 
production potential, and depending 
on how it is implemented (as a basis 
for comparison), it does not neces-
sarily supply information on how far 
systems can progress. By comparing 
it with optimal crop production, the 
LUR theoretically takes better account 
of the margins for progress than other 
indicators. However, the yield assump-
tions used to calculate the LUR remain 
theoretical. For the LUR, comparing 
systems to an optimum yield also 
raises questions. Is there not another 
optimum than the all-plant system? 
What about animal alternatives or even 
mixed crop-livestock systems that aim 
to optimise animal-plant synergies and 
maximise food production for humans 
on the same land?

The indicators described in this con-
tribution aim to quantify the efficiency 
and production levels achieved on 
the basis of plant and soil resources. 
However, many other criteria currently 
need to be taken into account to meet 
current challenges, such as environ-
mental impacts and/or services or 
economic and social performance. 
In particular, methane emissions are 
another major criticism of ruminant 
livestock farming. Solutions therefore 
need to be found to combine food pro-
duction with a reduction in greenhouse 
gas (GHG) emissions. Ineichen et al. 
(2024) proposed combining net pro-
duction and GHG emissions in a single 
indicator. For 87 Swiss farms, net pro-
tein production per kg CO2 eq averaged 
16.8 g crude protein/kg CO2 eq and was 
strongly negatively correlated with the 
use of concentrates.

In addition, based on modelling, 
Mertens et al. (2023) and Kearney et al. 

(2022) evaluated sustainability indica-
tors, including profitability, methane 
emissions and net efficiency of meat 
production from dairy calves, demon-
strating the interest of these systems 
from an environmental point of view 
and the compromises to be found 
between profitability and use of arable 
land.

However, there is no guarantee that 
the various indicators will converge 
towards values that are favourable to 
the various sustainability criteria and 
adjustments will certainly have to be 
made in order to define the devel-
opment paths to be implemented. 
Such an exercise has already been 
carried out with a multi-stakeholder 
panel using a decision support tool 
(Battheu-Noirfalise et al., 2024a) for 
dairy systems.

Conclusion

This summary brings together the 
many indicators and large datasets 
used to characterise current ruminant 
farming systems and their capacity to 
act as net producers of food for human 
consumption. The performance of the 
systems is analysed as a function of 
the type of livestock, crop rotation and 
management parameters. The study 
shows that there is room for improve-
ment, specifically by basing livestock 
farming on grass and reducing the use 
of maize and concentrates. This sum-
mary, which focuses on France and a 
number of neighbouring countries 
as well as other international articles, 
demonstrates the value of ruminant 
livestock systems for making the most 
of biomass that is inedible by humans. 
In the future, when demand for food 
is set to increase and plant resources 
are likely to be mobilised for other 
purposes (e.g. energy, fibre, etc.), the 
key issues affecting ruminants will 
focus on optimising the use of food 
that cannot be consumed by humans 
and land that cannot be farmed, with-
out overlooking the other services 
provided by livestock farming. This 
means rethinking the place and opti-
mal practices of livestock farming in 
agro-ecosystems.
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Abstract
While animal-based foods account for 25% of the protein consumed by humans worldwide, and are recognized for their nutritional quality, 
livestock farming is regularly criticized for its inefficiency. In particular, the use of edible human food and arable land to produce food for 
animals raises questions. Numerous indicators have been developed to objectivize the contribution of livestock farming to human food 
supply: net protein and energy conversion efficiency, arable land use, land use ratio and net productivity. These indicators, which exist in 
a number of variants, are described, analyzed and evaluated on the basis of a compilation of various dairy and beef farm databases. The 
analysis demonstrates the value of many ruminant systems and identifies areas for improvement, in particular by basing systems on grass 
and reducing the use of human edible feed.
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Résumé
Évaluer et interpréter l’efficience d’utilisation des aliments et des terres par les ruminants
Alors que les aliments d’origine animale représentent 25 % des protéines consommées par l’Homme dans le monde et sont reconnus pour leur 
qualité nutritionnelle, l’élevage est régulièrement critiqué pour son inefficience. En particulier, l’utilisation d’aliments comestibles par l’Homme et 
de terres cultivables pour produire de l’alimentation à destination de l’animal pose question. De nombreux indicateurs ont été développés afin 
d’objectiver l’apport des élevages à la fourniture d’alimentation humaine : l’efficience nette de conversion des protéines et de l’énergie, l’utilisation 
des terres arables, le land use ratio et la productivité nette. Ces indicateurs, qui existent avec plusieurs variantes, sont décrits, analysés et évalués 
sur base d’une compilation de différentes bases de données d’élevages bovins lait et viande. L’analyse démontre l’intérêt de nombreux systèmes 
ruminants et permet d’identifier des marges d’améliorations, notamment en basant les systèmes sur l’herbe et en réduisant l’utilisation des matières 
premières directement utilisables en alimentation humaine.
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